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Abstract— In this paper, a novel kinematic-based optimal
trajectory planning formulation for an autonomous vehicle
is presented. In this new formulation, the quadratic errors
of position, velocity, and acceleration are minimized subject
to the rear wheel car-like vehicle nonlinear kinematic model.
Minimizing the error of velocity and acceleration in addition
to the error of position, allows us to obtain both optimal
vehicle trajectory and control law. The Variational approach
is used to minimize the cost function. Then, optimal trajectory
and control inputs are numerically calculated by solving a
set of two-point boundary value (TPBV) nonlinear differential
equations. Finally, the proposed method is evaluated in two
scenarios of lane changing and multi-curvature road which
verify the success of the proposed method in generating an
optimal trajectory and control inputs.

I. INTRODUCTION

Motion planning is one of the key components of au-
tonomous driving which deploys a variety of knowledges
from different areas such as machine learning, artificial
intelligence, control, and so on. Motion planning can be
divided into the following four categories [1]:

• Route Planning is investigating a global route from
origin to destination considering the road network [2].
A* [3] and Dijkstra [4] are among two most common
algorithms for route planning.

• Path Planning is searching for a geometric path con-
necting the initial configuration to the terminal con-
figuration satisfying the road boundaries and collision
avoidance. Rapidly exploring random trees (RRT) [5],
Lattice Planner [6], and Potential fields [7] are among
the popular methods in this area.

• Maneuver Planning is deciding and choosing the safest
maneuver with the lowest risk, considering interactions
with the surrounding environment. Using decision mak-
ing techniques [8] in collision avoidance [9] and driving
assistance systems [10] are some examples of maneuver
planning.

• Trajectory Planning is real-time transition planning of
the vehicle which provides safe maneuver and kinemat-
ically feasible trajectory for the vehicles control system.
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The scope of this research is trajectory planning of
autonomous vehicles. Many algorithms and methods are
proposed in the literature addressing this issue.

In the conventional planning methods, to guarantee
smoothness and safety of the trajectory, it is represented
by a specific geometric function such as the Bezier curve
[11], Spline [12], or polynomial [13] . In [14], the trajectory
is generated by solving an optimization inside a driving
corridor that minimizes the error of position, velocity, accel-
eration, jerk, and the yaw rate which is subject to the desired
behavior of the vehicle given by the nonlinear inequality
constraints. Nonetheless, these methods fails to generate
feasible trajectories for the vehicle to follow as they do not
consider the model of the vehicle and motion constraints.

In more recent planning methods, the vehicle system
model is taken into account to guarantee the compatibility
of the generated trajectory with the kinematics and non-
holonomic constrains of the vehicle [15], [16]. Moreover,
The authors in [17] developed a new trajectory tracking
method in a kinematic-dynamic cascade structure where the
control inputs are represented by a polynomial function.
However, considering the linear kinematic model in [15],
[16] and restricting the control input to polynomial repre-
sentation in [17] reduce the solution space and cause sub-
optimality in these studies.

Even though these results are important, we take a broader
look by (i) considering the nonlinear kinematic model of
the vehicle, (ii) combining trajectory planning and tracking
control together, and (iii) not restricting the trajectory and
control inputs to the certain types of geometric function rep-
resentations (e.g. Bezier curves, splines, and polynomials),
which generally are neglected by the existing works.

In this study, a novel cost function is presented which gives
a kinematically feasible optimal trajectory by minimizing
the quadratic error of position, velocity, and acceleration
subject to the nonlinear rear-wheel car-like vehicle model.
The variational approach is used to solve the optimization
and the corresponding optimal control law is obtained. At the
end, the optimal trajectory and control inputs are found by
solving a set of two-point boundary value (TPBV) nonlinear
differential equations numerically. The proposed framework
is capable of tracking any arbitrary reference with continuous
acceleration profile, which is shown in the simulation part.

The remainder of this paper is organized as follows:
section II formulates the model and problem definition. The
proposed solution method is explained in section III. In
section IV, the numerical results are described. Finally, the
conclusions and future work are presented in section V.
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II. PROBLEM FORMULATION

A. Model

In this paper, the kinematics of a rear wheel car-like
vehicle model is used in trajectory generation and tracking
control design which can be expressed as follows [18]

ẋ(t) = v(t) cos(θ(t))

ẏ(t) = v(t) sin(θ(t))

θ̇(t) =
1

`
v(t) tan(φ(t))

v̇(t) = a(t)

(1)

where t refers to time, (x, y) are longitudinal and lateral
positions of the rear-wheel axis midpoint, θ is heading angle
and φ ∈ (−π2 ,

π
2 ), v, a, and ` are steering angle, velocity,

acceleration and wheelbase length, respectively (see Fig. 1).
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Fig. 1. Rear-wheel car-like vehicle model

B. Trajectory Planning

The state-space model (1) includes 4 states x(t) =
[x(t) y(t) θ(t) v(t)]

T and 2 control inputs u(t) =
[φ(t) a(t)]

T . The trajectory planner computes the optimal
trajectory [x(t) y(t)]T that minimizes

J(u(t)) =

∫ tf

t0

(
e2p(x(t), y(t), xr(t), yr(t))

+ e2v(ẋ(t), ẏ(t), ẋr(t), ẏr(t))

+ e2a(ẍ(t), ÿ(t), ẍr(t), ÿr(t))
)
dt

(2)

where

e2p(·) =
(
x(t)− xr(t)

)2
+
(
y(t)− yr(t)

)2
e2v(·) =

(
ẋ(t)− ẋr(t)

)2
+
(
ẏ(t)− ẏr(t)

)2
e2a(·) =

(
ẍ(t)− ẍr(t)

)2
+
(
ÿ(t)− ÿr(t)

)2 (3)

where e2p(·), e2v(·), and e2a(·) are quadratic errors of position,
velocity, and acceleration, respectively. Also, tf is the fixed
final time, [xr(t) yr(t)]T is the geometric reference trajectory

which both are given by the path planner and is assumed to
be at least twice differentiable.

Taking the derivative of ẋ(t) and ẏ(t) in (1), we have

ẍ(t) = a(t) cos(θ(t))− 1

`
v2(t) tan(φ(t)) sin(θ(t))

ÿ(t) = a(t) sin(θ(t)) +
1

`
v2(t) tan(φ(t)) cos(θ(t))

(4)

substituting ẋ(t), ẏ(t), ẍ(t), and ÿ(t) in (3) gives

e2p(·) =
(
x(t)− xr(t)

)2
+
(
y(t)− yr(t)

)2
e2v(·) =

(
v(t) cos(θ(t))−ẋr(t)

)2
+
(
v(t) sin(θ(t))−ẏr(t)

)2
e2a(·) =(
a(t) cos(θ(t))− 1

`
v2(t) tan(φ(t)) sin(θ(t))− ẍr(t)

)2
+
(
a(t) sin(θ(t)) +

1

`
v2(t) tan(φ(t)) cos(θ(t))− ÿr(t)

)2
(5)

The terms e2v(·) and e2a(·) are added in the cost function
to guarantee the continuity of velocity and acceleration by
tracking the first and the second derivatives of reference
trajectory. Moreover, it allows us to extract the optimal
control u∗(t) since the control inputs appear explicitly in
the cost function.

As a result, the goal is for [x(t) y(t)]T to follow
[xr(t) yr(t)]

T and the reference trajectory is also assumed
to be twice differentiable; thus, [ẋ(t) ẏ(t)]T and [ẍ(t) ÿ(t)]T

should follow [ẋr(t) ẏr(t)]
T and [ẍr(t) ÿr(t)]

T , respectively.

C. Boundary Conditions

Since the path planner initiates its pathfinding from the
initial coordination of the vehicle and our goal is to track
the desired reference path, the initial and final position
of the vehicle should be on the reference trajectory, i.e.
(x(t0), y(t0)) = (xr(t0), yr(t0)) and (x(tf ), y(tf )) =
(xr(tf ), yr(tf )). Considering the fact that the error e2v(·) is
expected to be zero at final time tf ,

ẋ(tf ) = v(tf ) cos(θ(tf ))

ẏ(tf ) = v(tf ) sin(θ(tf ))
(6)

θ(tf ) and v(tf ) can also be found as

θ(tf ) = arctan

(
ẏ(tf )

ẋ(tf )

)
v(tf ) =

{
ẋ(tf )

cos(θ(tf ))
, θ(tf ) 6= ±π2

ẏ(tf )
sin(θ(tf ))

, θ(tf ) 6= 0
(7)

Finally, θ0 and v0 follow the initial conditions of the
vehicle.

III. SOLUTION METHOD

Lemma 1: An optimal control u∗(t) = [φ∗(t) a∗(t)]
T for

t ∈ [t0, tf ] which causes the system (1) to follow an optimal
state x∗(t) = [x∗(t) y∗(t) θ∗(t) v∗(t)]

T that minimizes the
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cost function (2) is given by solving the following two-point
boundary value (TPBV) state nonlinear differential equations

ẋ∗(t) = v∗(t) cos(θ∗(t))

ẏ∗(t) = v∗(t) sin(θ∗(t))

θ̇∗(t) =
1

`
v∗(t) tan(φ∗(t))

v̇∗(t) = a∗(t)

(8)

and co-state nonlinear differential equations

ṗ∗1(t) = −2(x∗(t)− xr(t))
ṗ∗2(t) = −2(y∗(t)− yr(t))

ṗ∗3(t) =
(
2v∗(t)ẏr(t)−

2

`
ẍr(t)v

∗2

(t) tan(φ∗(t))

+ 2a∗(t)ÿr(t)− p∗2(t)v∗(t)
)
cos(θ∗(t))

−
(
2v∗(t)ẋr(t) +

2

`
ÿr(t)v

∗2

(t) tan(φ∗(t))

+ 2a∗(t)ẍr(t)− p∗1(t)v∗(t)
)
sin(θ∗(t))

ṗ∗4(t) =(
2ẋr(t) +

4

`
v∗(t)ÿr(t) tan(φ

∗(t))− p∗1(t)
)
cos(θ∗(t))

+
(
2ẏr(t)−

4

`
v∗(t)ẍr(t) tan(φ

∗(t))− p∗2(t)
)
sin(θ∗(t))

− 2v∗(t)− 4

`2
v∗

3

(t) tan2(φ∗(t))− 1

`
p∗3(t) tan(φ

∗(t))

(9)
with boundary conditions as shown in Section II-C. The
optimal control laws are also given by

φ∗(t) = arctan

(
`

v∗3(t)

(
v∗(t)ÿr(t) cos(θ

∗(t))

− v∗(t)ẍr(t) sin(θ∗(t))−
1

2
p∗3(t)

))
a∗(t) = ẍr(t) cos(θ

∗(t)) + ÿr(t) sin(θ
∗(t))− 1

2
p∗4(t)

(10)

Proof: First, we form the Hamiltonian as follows [19]

H(x(t),u(t),p(t)) = e2p(·) + e2v(·) + e2a(·)
+ p1(t)v(t) cos(θ(t))

+ p2(t)v(t) sin(θ(t))

+ p3(t)
(1
`
v(t) tan(φ(t))

)
+ p4(t)a(t)

(11)

where the vector p(t) = [p1(t) p2(t) p3(t) p4(t)]
T includes

the Lagrange multipliers. The necessary conditions of opti-
mality are [19]:

ẋ∗(t) =
∂H
∂p

(x∗(t),u∗(t),p∗(t)) (12)

−ṗ∗(t) =
∂H
∂x

(x∗(t),u∗(t),p∗(t)) (13)

0 =
∂H
∂u

(x∗(t),u∗(t),p∗(t)) (14)

Equations (8) and (9) are derived from substitution ofH(·)
in the equations (12) and (13), respectively. Also, (14) gives

∂H(·)
∂φ

=
2

`
v∗(t)

(
1 + tan2(φ∗(t))

) (1
`
v∗

3

(t) tan(φ∗(t))

+ v∗(t)ẍr(t) sin(θ
∗(t))− v∗(t)ÿr(t) cos(θ∗(t))

+
1

2
p∗3(t)

)
= 0

∂H(·)
∂a

= a∗(t)− ẍr(t) cos(θ∗(t))− ÿr(t) sin(θ∗(t))

+
1

2
p∗4(t) = 0

(15)
from which the optimal control laws in (10) are obtained.
This completes the proof.

Remark 1: arctan(·) is a continuous function of its argu-
ment between (−π2 ,

π
2 ); thus, in equation (10) the argument

of arctan(·) is continuous which implies continuous steering
angle and consequently continuous curvature

(
κ(t) ∝ φ(t)

)
.

IV. NUMERICAL RESULTS
A. Numerical Approach for Solving the Two-point Boundary
Value Problem

Solving the differential equations with fixed initial and
final boundaries is named the two-point boundary value
(TPBV) problem. In a nonlinear case, analytical solutions
may be found for special examples of TPBV problems, but
generally, these type of problems are solved numerically
in the literature. The collocation method is one of the
most popular techniques among numerous existing numerical
solution methods for this type of problem. One of the major
advantages of collocation methods is their insensitivity to the
boundary values variations which is why we used it to solve
our problem.

To solve the TPBV differential equations (8) and (9), we
used BVP4C [20] package of MATLAB. This package solves
some standard forms of TPBV problems by using the forth-
order Lobatto IIIa formula. Since the problem is tracking,
the reference trajectories are selected as initial guesses for
the state variables. Moreover, the co-state variables are
anticipated to become zero which is the assumed initial guess
for these variables.

B. Simulation

The performance of the proposed method is evaluated in
two different scenarios: lane changing and a multi-curvature
road. The results of Lemma 1 are used to generate the optimal
vehicle trajectory and control inputs. To capture the effect of
the vehicle kinematic model in the trajectory planning, v(t0)
and θ(t0) are chosen such that the initial quadratic errors
of velocity e2v(·) and acceleration e2a(·) not to be zero. The
simulations are developed in MATLAB.

1) Lane-change scenario: It is assumed that the reference
trajectory and the final time are given by the path planner,
where the initial time is t0 = 10 sec and the final fixed time
is tf = 70 sec. The reference trajectory is given as follows
t ∈ [t0, tf ]
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yr(xr) = 5 + 2.5 tanh

(
xr − 40

10

)
(16)

Also, the wheelbase length of the vehicle is ` = 1m. Table
I shows the boundary conditions for this scenario.

TABLE I
BOUNDARY CONDITIONS FOR THE LANE-CHANGE SCENARIO

x(t0) = 10 (m) x(tf ) = 70 (m)

y(t0) = 2.5 (m) y(tf ) = 7.5 (m)

θ(t0) = 0.15 (rad) θ(tf ) = 0 (rad)

v(t0) = 5 (m
s
) v(tf ) = 1 (m

s
)

Fig. 2. Optimal vehicle trajectory (lane-change scenario)

The generated trajectories are demonstrated in Fig. 2. It
can be seen that the tracking error converges to zero after
5 meters, and the vehicle trajectory meets the boundary
conditions as mentioned in Table I. The transient shows that
the vehicle cannot instantly track the reference trajectory due
to the error between the initial configuration of the vehicle
and the reference trajectory.

In Fig. 3, heading angle, velocity, and their references are
shown which meet the boundary conditions as mentioned in
Table I. The reference heading angle and velocity are derived
from the flatness property of system (1) as follows

θr(t) = arctan

(
ẏr(t)

ẋr(t)

)
vr(t) =

{
ẋr(t)

cos(θr(t))
, θr(t) 6= ±π2

ẏr(t)
sin(θr(t))

, θr(t) 6= 0
(17)

Moreover, the figure shows that the tracking occurs after 5
seconds.

Fig. 4 illustrates the optimal control inputs, steering angle
and acceleration, given by (10) which makes the car with
the kinematic model (1) follow the generated trajectory (16).
As Fig. 4 (a) shows, the steering angle does not have any
discontinuity and varies smoothly.

2) Multi-curvature scenario: Performance of the con-
troller in a multi-curvature road is evaluated in this scenario.
The initial time is t0 = 0 sec and the final fixed time is
tf = 20 sec. The reference trajectory for t ∈ [t0, tf ] is
defined as

20 40 60
-0.4

-0.2

0

0.2

0.4

20 40 60
0

1

2

3

4

5

Fig. 3. Lane-change scenario: (a) heading angle: θ∗(t) and θr(t), (b)
velocity: v∗(t) and vr(t)
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0
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Fig. 4. Optimal control inputs (lane-change scenario): (a) steering angle:
φ∗(t), (b) acceleration: a∗(t)

yr(xr) = 3.5 sin(
2π

15
xr)− 4 cos(

2π

20
xr) + 6 (18)

The wheelbase length of the vehicle is ` = 1m and the
boundary conditions are shown in Table II, following the
results of Section II-C. Fig. 5 shows the trajectory of the
vehicle. It can be seen that the tracking error becomes zero
after almost 5 meters. Fig. 6 demonstrates heading angle and
velocity in which the references are derived from (17). Fig.
7 illustrates the simulated control inputs: steering angle and
acceleration.

TABLE II
BOUNDARY CONDITIONS FOR THE MULTI-CURVATURE SCENARIO

x(t0) = 0 (m) x(tf ) = 20 (m)

y(t0) = 2 (m) y(tf ) = 5 (m)

θ(t0) = 1.3 (rad) θ(tf ) = −0.63 (rad)

v(t0) = 5 (m
s
) v(tf ) = 1.24 (m

s
)

Same as the previous scenario, the transient occurs due to
the consideration of the kinematic model in the minimization
problem and a smooth steering angle is generated which
guarantees the continuity of curvature.

V. CONCLUSIONS AND FUTURE WORK

In this work, a novel optimal trajectory planning and
tracking control formulation is presented for the vehicle
kinematic model.

Minimizing the quadratic errors of velocity and accelera-
tion in addition to the position quadratic error in the cost

565

Authorized licensed use limited to: ASU Library. Downloaded on November 22,2022 at 00:08:31 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. Optimal vehicle trajectory (multi-curvature scenario)
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Fig. 6. Multi-curvature scenario: (a) heading angle: θ∗(t) and θr(t), (b)
velocity: v∗(t) and vr(t)

function enables us to extract the optimal control u∗(t).
Additionally, it guarantees the continuity of steering and
curvature without considering any parametrized polynomial
function representation for the steering angle. At the end,
optimal vehicle trajectory and control inputs are numerically
calculated by solving a set of TPBV nonlinear differential
equations. The proposed algorithm provides the optimal tra-
jectory for any arbitrary desired reference with a continuous
acceleration profile.

In our future work, mechanical and physical constraints
of the vehicle and boundaries of the road will be considered
to achieve a safer and more comfortable navigation.
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