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   Abstract—In this paper, the car-like robot kinematic model tra-
jectory tracking and control problem is revisited by exploring an
optimal analytical solution which guarantees the global exponen-
tial  stability  of  the tracking error.  The problem is  formulated in
the  form  of  tracking  error  optimization  in  which  the  quadratic
errors  of  the  position,  velocity,  and  acceleration  are  minimized
subject to the rear-wheel car-like robot kinematic model. The in-
put-output  linearization  technique  is  employed  to  transform  the
nonlinear problem  into  a  linear  formulation.  By  using  the  vari-
ational  approach,  the  analytical  solution  is  obtained,  which  is
guaranteed to be globally exponentially stable and is  also appro-
priate for  real-time  applications.  The  simulation  results  demon-
strate  the  validity  of  the  proposed  mechanism  in  generating  an
optimal trajectory and control inputs by evaluating the proposed
method in an eight-shape tracking scenario.
    Index Terms—Global asymptotic  stability,  input-output  lineariza-
tion, optimal control, trajectory tracking.

I.  Introduction

CONTROL  of  the  nonholonomic  car-like  robot  (NCLR)
kinematic model has been a cardinal research topic since

the model is widely prevalent in autonomous driving control,
motion  planning,  robotics,  and  so  on.  The  nonholonomic
nature of the robot constraints has made this problem challen-
ging as these class of systems cannot be asymptotically stabil-
ized around the equilibrium point by using any smooth time-
invariant  state  feedback  [1].  The  existing  tracking  control
techniques can be divided into two categories of point-to-point
stabilization and trajectory tracking [2]. In point-to-point  sta-
bilization,  the  control  task  is  to  solve  a  stabilization  problem
for an equilibrium point in the robot state space where the ro-
bot must reach from a given initial configuration. However, in
trajectory tracking,  the  vehicle  must  follow  a  desired  refer-

ence path with an associated timing law starting from an ini-
tial point which may be on or off the reference path. The tra-
jectory tracking problem is of interest in the literature and it is
also the scope of this paper since the point-to-point stabiliza-
tion requires  a  copious  amount  of  information  and  may  pro-
duce sporadic and large control signals for a large initial con-
figuration error.

A.  Literature Review
The  early  study,  in  [3],  employed  the  Lyapanov  stability

theory  to  design  a  locally  asymptotically  stable  tracking
controller  for  the  linearized  kinematic  model  around  the
reference  trajectory.  The  dynamic  feedback  linearization
techniques,  as  explained  in  [4]  and  [5],  have  motivated
various recent control techniques, such as the linear parameter
varying  (LPV)  control  technique  in  [6],  kinematic-dynamic
cascade  controller  design  in  [7],  and  the  event-triggered
tracking  control  structure  proposed  in  [8],  to  achieve  the
globally  stable  output  tracking  performance.  The
aforementioned frameworks solely have explored a stabilized
solution;  however,  achieving  a  better  control  performance
such  as  optimality  of  the  trajectory  and  control  inputs  have
been generally neglected in these works.

Recently, the model predictive control (MPC) technique has
propelled  to  the  forefront  of  the  car-like  robot  control
strategies (e.g., [9]–[11]) as it can provide an optimal solution
by predicting the vehicle motion and control actions at future
time  instants  [12].  A  major  drawback  of  MPC  is  the
computational  overhead  it  imposes  to  the  system  due  to  the
receding horizon calculation. Analytical solutions, proposed in
[11] and [13], made this method computationally inexpensive
for  real-time  applications.  Nevertheless,  they  reduced  the
solution  space  by  linearizing  the  error  dynamics  around  the
reference  trajectory  which  causes  sub-optimality.  The
performance  of  the  continuous  nonlinear  MPC  (NMPC)  and
discrete  NMPC  are  also  analyzed  in  [14],  which  showed  a
large  tracking  error  produced  in  discrete  NMPC  due  to  the
variable sampling compared with the continuous NMPC.

B.  Motivation
Generally  speaking,  the  methods  that  addressed  the

kinematic model control has mostly followed either of the two
following  strategies.  First,  are  the  methods  that  transformed
the  system  error  dynamics  into  the  robot  coordinate  frame
where  the  car  inputs  explicitly  appear  in  the  model,  and
consequently, be considered in the control, as in [3], [13], and
[14].  However,  for  the  purpose of  continuous control  design,
the  error  dynamics  are  linearized  around  the  reference
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trajectory which, indeed, results in local stability. Second, are
the  methods  which  employed  the  input-output  linearization
technique  by  defining  a  linear  relation  from  the  defined
auxiliary  input  vector  to  the  outputs  [15].  This  strategy
guarantees the global stability as long as the internal dynamics
are  bounded.  While  the  first  method  is  more  attractive  in
trajectory tracking due to the explicit consideration of control
inputs,  linearization  around  the  reference  trajectory  causes
sub-optimality  in  this  strategy.  To this  end,  in  this  paper,  the
input-output linearization technique is employed to guarantee
the  global  stability  of  the  trajectory  tracking  and  an  error
minimization  framework  for  the  transformed  model  is
designed to address the sub-optimality of generated trajectory
by using the flatness property of kinematic model.

This  paper  proposes  a  novel  globally  exponentially  stable
trajectory  optimization  and  tracking  control  framework  to
minimize  the  tracking  error  of  position,  velocity,  and
acceleration.  The  input-output  linearization  technique  is
employed to transform the car-like nonlinear system tracking
error  model  into  a  linear  differential  map  from  the  defined
auxiliary  input  to  the  output.  Unlike  the  aforementioned
studies, the proposed analytical solution drastically lowers the
computational cost.  The variational approach is used to solve
the trajectory optimization problem, and the simulation results
show  that  our  trajectory  planning  technique  is  capable  of
following  any  arbitrary  reference  function  with  continuous
first  and  second  derivatives.  In  addition,  the  error  cost  is
significantly  down  compared  to  the  numerical  solution.  The
comparison of our proposed method with the three most well-
known tracking control techniques in the literature is shown in
Table I.

The remainder of this paper is organized as follows: Section
II  formulates  the  model  and  problem  definition.  The  input-
output  linearization  technique  and  the  proposed  solution
method are  explained in  Sections  III  and IV,  respectively.  In
Section  V,  the  simulation  results  are  discussed.  Finally,  the
conclusions and future works are presented in Section VI.

II.  Problem Formulation

A.  Model

x(t) =
[
x(t) y(t) ψ(t) v(t)

]T

u(t) = [δ(t) a(t)]T

The  kinematics  of  a  rear-wheel  car-like  robot  model,  as
shown in Fig. 1, includes four states 
and  two  control  inputs  which  can  be
expressed as follows [16]:

ẋ(t) = v(t)cos(ψ(t))
ẏ(t) = v(t) sin(ψ(t))

ψ̇(t) =
1
ℓ

v(t) tan(δ(t))

v̇(t) = a(t), (1)
t (x,y)

v ψ ∈ [−π,π]

δ ∈
(
−π

2
,
π

2

)
a

ℓ

where  refers to time,  are longitudinal and lateral posi-
tions  of  the  rear-wheel  axis  midpoint  with  the  magnitude  of
velocity  denoted  by ,  is  heading  angle,

 is  the steering angle of the front wheels,  refers
to the acceleration, and  is the wheelbase length. For the tra-
jectory planning problem, we define the output of the system

as

z(t) =
[
x(t)

y(t)

]
. (2)

B.  Trajectory Planning
The  trajectory  planning  is  formulated  in  the  form  of  an

optimal control problem as follows

u∗(t)
x∗(t)

Optimal Control Problem 1 (OPT1): Find an admissible and
bounded  control  input  that  causes  the  system  (1)  to
follow  an  admissible  trajectory  that  minimizes  the
performance measure

J(u(t)) =
1
2

w t f

t0
[e2

p(x(t),y(t), xr(t),yr(t))

+ e2
v(ẋ(t), ẏ(t), ẋr(t), ẏr(t))

+ e2
a(ẍ(t), ÿ(t), ẍr(t), ÿr(t))]dt, (3)

t f zr(t) = [xr(t) yr(t)]Twhere  is the fixed final time and  is the
twice differentiable geometric reference path that both are giv-
en by the path planner.

The error terms are defined as

e2
p(·) =

[
x(t)− xr(t)
y(t)− yr(t)

]T [
q1 0
0 q2

] [
x(t)− xr(t)
y(t)− yr(t)

]
e2

v(·) =
[

ẋ(t)− ẋr(t)
ẏ(t)− ẏr(t)

]T [
q3 0
0 q4

] [
ẋ(t)− ẋr(t)
ẏ(t)− ẏr(t)

]
e2

a(·) =
[

ẍ(t)− ẍr(t)
ÿ(t)− ÿr(t)

]T [
r1 0
0 r2

] [
ẍ(t)− ẍr(t)
ÿ(t)− ÿr(t)

]
, (4)

q1,q2,q3,q4,r1 r2
ẋ(t) ẏ(t)

where  and  are  positive  weights.  Taking the
derivative of  and  in (1) gives

ẍ(t) = a(t)cos(ψ(t))− 1
ℓ

v2(t) tan(δ(t)) sin(ψ(t))

ÿ(t) = a(t) sin(ψ(t))+
1
ℓ

v2(t) tan(δ(t))cos(ψ(t)), (5)

ẋ(t) ẏ(t) ẍ(t) ÿ(t)then by substituting , , , and  in (4),

e2
p(·) =q1[x(t)− xr(t)]2+q2

[
y(t)− yr(t)

]2

e2
v(·) =q3

[
v(t)cos(ψ(t))− ẋr(t)

]2
+q4

[
v(t) sin(ψ(t))− ẏr(t)

]2

e2
a(·) =r1[a(t)cos(ψ(t))− 1

ℓ
v2(t) tan(δ(t)) sin(ψ(t))− ẍr(t)]2

+ r2[a(t) sin(ψ(t))+
1
ℓ

v2(t) tan(δ(t))cos(ψ(t))− ÿr(t)]2.

(6)
e2

v(·) e2
a(·)

u∗(t)

[ẋ(t) ẏ(t)]
[ẍ(t) ÿ(t)] [ẋr(t) ẏr(t)] [ẍr(t) ÿr(t)]

[x(t) y(t)]
[xr(t) yr(t)]

The terms  and  are added as the control inputs are
required  to  appear  explicitly  in  the  cost  function,  that  allows
the  optimal  control  to  be  extracted  without  considering
any  parametrized  polynomial  function  representation  for
trajectory  and  control  inputs.  Therefore,  and

 should  follow  and ,
respectively,  since  the  goal  is  for  to  follow

, and the reference trajectory is assumed to be twice
differentiable.  This  framework  makes  the  NCLR  error
minimization  problem  tractable  for  the  higher  dimensional
kinematic  models  by  adding  the  higher  order  derivatives  of
position error to the cost function (3).
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C.  Boundary Conditions
x(t0) y(t0) ψ(t0) v(t0)

e2
v(·) t f

The initial states , , , and  follow the initial
configuration  of  the  vehicle,  and  they  are  not  necessarily
aligned with the reference trajectory,  but considering the fact
that the error  is expected to be zero at final time ,

ẋr(t f ) = v(t f )cos(ψ(t f ))
ẏr(t f ) = v(t f ) sin(ψ(t f )). (7)

ψ(t f ) v(t f )Accordingly,  and  can be found as

ψ∗(t f ) = arctan
(

ẏ∗r (t f )
ẋ∗r (t f )

)

v∗(t f )=



ẋ∗r (t f )
cos(ψ∗(t f ))

=
ẏ∗r (t f )

sin(ψ∗(t f ))
, ψ∗(t f ), {0,±π

2
,π}

ẋ∗r (t f ), ψ∗(t f ) = 0
−ẋ∗r (t f ), ψ∗(t f ) = π

sign(ψ∗(t f ))ẏ∗r (t f ), ψ∗(t f ) = ±π
2
.

(8)

III.  Input-Output Linearization Technique

z(t)

In  order  to  simplify  the  problem  formulation  and
circumvent  dealing  with  the  nonlinear  differential  equations,
the  input-output  linearization technique is  used as  introduced
in  [4]  to  transform  the  nonlinear  kinematic  model  (1)  into  a
linear  model  from  input  to  output.  Since  the  system  inputs
explicitly  appeared  in  the  second  derivative  of  the  defined
output  in (5), it can be rewritten into the following matrix
form

[
ẍ(t)
ÿ(t)

]
=


cos(ψ(t)) −1

ℓ
v2(t) sin(ψ(t))

sin(ψ(t))
1
ℓ

v2(t)cos(ψ(t))


[

a(t)
tan(δ(t))

]

=G(v,ψ)
[

a(t)
tan(δ(t))

]
. (9)

ζ(t) = [ζ1(t) ζ2(t)]TDefining an auxiliary input vector  gives

 a(t)

tan(δ(t))

 =G−1(v,ψ)ζ(t), (10)

that  results  in  two  decoupled  double  integrators  linearized
from input to output as

ẍ(t) = ζ1(t)
ÿ(t) = ζ2(t). (11)

Ω =

{
x(t) ∈ R4 | v(t) , 0, δ ∈

(
−π

2
,
π

2

)}
ψ(t) v(t)

The  system  has  the  relative  degree  2  in  the  region
 that  remains  with  two

internal dynamics  and .
ẍ(t)− ẍr(t) ÿ(t)− ÿr(t)If we form  and  errors as

ẍ(t)− ẍr(t) = ζ1(t)− ẍr(t) = η1(t)
ÿ(t)− ÿr(t) = ζ2(t)− ÿr(t) = η2(t), (12)

e(t)and define the error vector  as

e(t) =


e1(t)
e2(t)
e3(t)
e4(t)

 =


x(t)− xr(t)
y(t)− yr(t)
ẋ(t)− ẋr(t)
ẏ(t)− ẏr(t)

 , (13)

ė(t) = Ae(t)+Bη(t)the  tracking  error  state  equation  can  be
written as follows

.
e(t) =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

e(t)+


0 0
0 0
1 0
0 1

η(t), (14)

that is completely controllable. The OPT1 is reformulated as

η∗(t)
e∗(t)

Optimal  Control  Problem  2  (OPT2): Find  an  admissible
control  that  causes  the  system  (14)  to  follow  an
admissible  trajectory  that  minimizes  the  performance
measure

J(η(t))=
1
2

w t f

t0

[
eT (t)Qe(t)+ηT (t)Rη(t)

]
dt, (15)

where

Q =


q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4

 and R =
[

r1 0
0 r2

]
(16)

are positive definite weighted matrices.
Clearly, the boundary conditions are changed to

e(t0) =


x(t0)− xr(t0)
y(t0)− yr(t0)

v(t0)cos(ψ(t0))− ẋr(t0)
v(t0) sin(ψ(t0))− ẏr(t0)

 and e(t f ) =


0
0
0
0

 . (17)

 

TABLE I  
Comparison of Methods

Method Stability Optimality Model Assumption Description

Kanayama [3] LAS* No Unicycle Model linearization State Feedback + Lyapanov Stability Function

Luca [4] GAS* No Unicycle and bicycle Nonlinear model Dynamic Feedback Linearization

CMPC [14] LAS No Unicycle Model linearization Reference Error Dynamic Tracking

Proposed method GAS Yes Unicycle and bicycle Nonlinear model Input-Output Linearization + Analytical Solution

*LAS: Locally asymptotically stable, and GAS: Globally asymptotically stable
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Fig. 1.     Rear-wheel car-like robot model.
 

MAJD et al.: A STABLE ANALYTICAL SOLUTION METHOD FOR CAR-LIKE ROBOT TRAJECTORY TRACKING AND OPTIMIZATION 41 



e(t f )

Remark  1: It  should  be  noted  that  OPT2  is  not  a  linear
quadratic  regulator  (LQR)  problem  since,  unlike  the  LQR
problem formulation,  is assumed to be fixed.

IV.  Analytical Solution Method

Since  the  problem  is  minimizing  the  cost  functional  (15)
subject  to  the  tracking  error  state  equations  (14),  the
variational method is employed to solve the optimization. The
proposed solution in  this  section is  not  only optimal  but  also
guarantees  the  exponential  stability  of  trajectory  and  control
inputs.

A.  Variational Method
η∗(t) t ∈ [t0, t f ]

e∗(t)
Lemma  1: An  optimal  control  for  which

gives  the  optimal  state  that  minimizes  the  cost  function
(15) is the solution of the following two-point boundary value
(TPBV) state linear differential equations

ė∗1(t) = e∗3(t)

ė∗2(t) = e∗4(t)

ė∗3(t) = η∗1(t)

ė∗4(t) = η∗2(t). (18)
and co-state linear differential equations

ṗ∗1(t) = −q1e∗1(t) (19)

ṗ∗2(t) = −q2e∗2(t) (20)

ṗ∗3(t) = −q3e∗3(t)− p∗1(t) (21)

ṗ∗4(t) = −q4e∗4(t)− p∗2(t), (22)
with  boundary  conditions  in  (17).  The  optimal  control  laws
are also given by

η∗1(t) = − 1
r1

p∗3(t) = ė∗3(t)

η∗2(t) = − 1
r2

p∗4(t) = ė∗4(t). (23)

Proof: To start  solving the minimization (15),  we form the
Hamiltonian as follows

H(e(t),η(t),p(t)) =

1
2

eT(t)Qe(t)+
1
2
ηT(t)Rη(t)+pT(t)

(
Ae(t)+Bη(t)

)
, (24)

p(t) = [p1(t) p2(t) p3(t) p4(t)]Twhere  the  vector  includes  the
Lagrange multipliers.
The necessary conditions of optimality are [17]

ė∗(t) =
∂H
∂p

(e∗(t),η∗(t),p∗(t)) (25)

−ṗ∗(t) =
∂H
∂e

(e∗(t),η∗(t),p∗(t)) (26)

0 =
∂H
∂η

(e∗(t),η∗(t),p∗(t)). (27)

State  and  co-state  equations  are  derived  from  the

H(·)substitution of  in (25) and (26), respectively. Also, (27)
gives

∂H(·)
∂η1

= r1(t)η∗1(t)+ p∗3(t) = 0

∂H(·)
∂η2

= r2(t)η∗2(t)+ p∗4(t) = 0

from which the optimal control laws in (23) are obtained. ■
p∗1(t) p∗2(t)Taking  the  second  and  third  derivative  of  and 

from (19) and (20) gives

p̈∗i (t)=−qiė∗i (t)=−qie∗j(t)
...
p∗i (t)=−qiė∗j(t)=

qi

ri
p∗j(t), (i, j)= (1,3), (2,4), (28)

ė∗j(t)
ṗ∗j(t) p∗i (t)

where  is given  from substitution  of  (23)  in  (18).  Simil-
arly, substituting  into the forth derivative of  gives

....
p ∗i (t) =

qi

ri
ṗ∗j(t) = −

qiq j

ri
e∗j(t)−

qi

ri
p∗i (t). (29)

e∗j(t) = −
1
qi

p̈∗i (t)From (28), we have . Thus, equation (29) can
be rewritten as

ri
....
p ∗i (t)−q j p̈∗i (t)+qi p∗i (t) = 0, (30)

p∗i (t)

which is a homogeneous linear ordinary differential equation.
To solve the linear differential (30), the Laplace transform of

 is first obtained as

P∗i (s) =
p∗it0 s3+ ṗ∗it0 s2+ ( p̈∗it0 −

q j

ri
p∗it0 )s+

...
p∗it0 −

q j

ri
ṗ∗it0(

s2+2mis+
√

qi

ri

)(
s2−2mis+

√
qi

ri

) , (31)

pit0 = p∗i (t)|t=t0 η∗i (t)where . From (28),  is found as
...
p∗i (t) = −qiė∗j(t) = −qiη

∗
j(t). (32)

Transforming (32) into the Laplace domain gives

s3P∗i (s)− s2 p∗it0 − sṗ∗it0 − p̈∗it0 = −qiH∗j (s). (33)

Substitution of (31) in (33) gives

H∗j (s) =
− 1

qi

...
p∗it0 s3−

q j

qiri

(
p̈∗it0−p∗it0

)
s2+

q j

qiri
ṗ∗it0 s+

q j

qiri
p̈∗it0(

s2+2mis+
√

qi

ri

)(
s2−2mis+

√
qi

ri

) .

(34)

p∗i (t)

p∗it0 ṗ∗it0 p̈∗it0...
p∗it0

η∗i (t) (
s2−2mis+

√
qi

ri

)

Taking  the  inverse  Laplace  transform  of  (31)  and
substituting  the  resulted  into  the  state  and  co-state
equations  gives  the  analytical  optimal  solution  of  the  OPT2
problem with eight unknown parameters of , , ,  and

,  which  can  be  found  to  satisfy  the  eight  initial  and  final
boundary  conditions  in  (17).  However,  (34)  shows  that  the
resulted  is unbounded due to the right-half plane roots of

the  polynomial .  Although,  this  analytical
solution  can  address  the  OPT2  assumptions,  it  fails  to
guarantee the stability of the system.

e(t f )We approach the instability issue by relaxing  to be free
while setting four of the initial conditions in (31) to cancel the
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unstable poles. The new assumption automatically changes the
original problem to the infinite-time LQR problem formulated
as follows.

η∗(t) e∗ = 0

e∗(t)

Optimal  Control  Problem  3  (OPT3): Find  an  admissible
control  that  causes  the  origin  of  the  closed  loop
system  (14)  to  be  globally  exponentially  stable  with  an
admissible  trajectory  that  minimizes  the  performance
measure

J(η(t))=
1
2

w t f

t0

[
eT (t)Qe(t)+ηT (t)Rη(t)

]
dt, (35)

where

Q =


q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4

 and R =
[

r1 0
0 r2

]
(36)

are positive definite diagonal weighted matrices satisfying the

boundary conditions

e(t0) =


x(t0)− xr(t0)
y(t0)− yr(t0)

v(t0)cos(ψ(t0))− ẋr(t0)
v(t0) sin(ψ(t0))− ẏr(t0)

 and e(t f ) =


0
0
0
0

 (37)

fi > 0Underdamped :

e∗i (t) =
ni

qi
√

fi
e−mi(t−t0)

[
aini sin

( √
fi(t− t0)

)
−bi cos

( √
fi(t− t0)+αi

) ]
(38)

e∗j(t) =
n2

i

qi
√

fi
e−mi(t−t0)

[
aini cos

( √
fi(t− t0)+αi

)
+bi sin

( √
fi(t− t0)+2αi

) ]
(39)

η∗i (t) =
−n3

i

qi
√

fi
e−mi(t−t0)

[
aini sin

( √
fi(t− t0)+2αi

)
−bi cos

( √
fi(t− t0)+3αi

) ]
. (40)

fi = 0Critically damped :

e∗i (t) =
−1
qi

[
bie−mi(t−t0)−mi(miai+bi)te−mi(t−t0)

]
(41)

e∗j(t) =
mi

qi

[
(miai+2bi)e−mi(t−t0)−mi(miai+bi)te−mi(t−t0)

]
(42)

η∗i (t) =
−m2

i

qi

[
(2miai+3bi)e−mi(t−t0)−mi(miai+bi)te−mi(t−t0)

]
. (43)

fi < 0Overdamped :

e∗i (t) =
ai

2qi
√
| fi|

c1ic2i
(
e−c1i(t−t0)−e−c2i(t−t0)

)
+

bi

2qi
√
| fi|

(
c1ie−c1i(t−t0)−c2ie−c2i(t−t0)

)
(44)

e∗j(t) =
ai

2qi
√
| fi|

c1ic2i
(
c2ie−c2i(t−t0)−c1ie−c1i(t−t0)

)
+

bi

2qi
√
| fi|

(
c2

2ie
−c2i(t−t0)−c2

1ie
−c1i(t−t0)

)
(45)

η∗i (t) =
ai

2qi
√
| fi|

c1ic2i
(
c2

1ie
−c1i(t−t0)−c2

2ie
−c2i(t−t0)

)
+

bi

2qi
√
| fi|

(
c3

1ie
−c1i(t−t0)−c3

2ie
−c2i(t−t0)

)
. (46)

t fas  approaches infinity.

B.  Globally Exponentially Stable Analytical Solution
Theorem  1: The  globally  exponentially  stable  analytical

solutions of the OPT3 are given by (38)–(46), where

fi =
1
4

(
2
√

qi

ri
−

q j

ri

)
, mi =

1
2

√
2
√

qi

ri
+

q j

ri

ni =

√
fi+m2

i =
4

√
qi

ri
, αi = arctan

 mi√
fi


c1i = mi−

√
| fi| > 0, c2i = mi+

√
| fi| > 0, (47)

ai bi
e(t0)

and  and  are given as in Table II, which satisfy the initial
boundary condition  in (17).

Proof: As mentioned in Section IV-A, in order to guarantee
the  exponential  stability  of  the  origin  in  the  closed  loop

 

TABLE II  
ai bi and  for Three Different Cases

Damping cases ai and bi coefficients

fi > 0Underdamped 

ai =
qi

√
fi

n2
i cos(αi)

[ e jt0

ni
+2eit0 sin(αi)

]
bi = −

qi
√

fieit0

ni cos(αi)
,

fi = 0Critically damped 
ai =

1
m2

i

[
qie jt0 +2miqieit0

]
,

bi = −qieit0 ,

fi < 0Overdamped 
ai =

1
m2

i − | fi |
[
qie jt0 +2miqieit0

]
bi = −qieit0 .
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(s2−2mis+
√

qi

ri
)

system  (14),  the  initial  conditions  in  (31)  are  tuned  so  as  to
cancel  the  unstable  poles  related  to  the  polynomial

. To do so, the initial conditions of (31) are
assigned as

p∗it0 = ai

ṗ∗it0 = bi

p̈∗it0 = −2mi(bi+2miai)+
q j

ri
ai+ai

√
qi

ri

...
p∗it0 = (bi+2miai)

√
qi

ri
+

q j

ri
bi, (48)

which gives

P∗i (s) =
ais+bi+2miai

(s+mi)2+ fi
, (49)

ai bi
P∗i (s)

s p∗i (t)

where  and  should be determined by the initial  boundary
conditions. Since  is a strictly-proper rational function of
,  is a time-invariant function [18]. Location of poles in

(49) leads in three underdamped, critically damped, and over-
damped solution cases:

fi > 0 P∗i (s)
p∗i (t) t ∈ [t0, t f ]

1)  Underdamped :  If  has  complex  roots,  the
inverse Laplace transform of (49) gives  for  as

p∗i (t)=
1√

fi
e−mi(t−t0)

[
aini cos

( √
fi(t− t0)−αi

)
+bi sin

( √
fi(t− t0)

) ]
. (50)

p∗i (t)By substituting the first derivative of  in (19) and (20),

−qie∗i (t)= − ni√
fi

e−mi(t−t0)
[
aini sin

( √
fi(t− t0)

)
−bi cos

( √
fi(t− t0)+αi

) ]
, (51)

e∗i (t) e∗j(t)
e∗i (t)

which gives  as (38). Consequently,  is found by tak-
ing the first derivative of  as in (39).

fi = 0
q2

j −4riqi = 0
p∗i (t) t ∈ [t0, t f ]

2)  Critically  Damped :  This  case  occurs  when  the
weights  follow  the  equality .  In  this  case,  the
inverse Laplace transform of (49) gives  for  as

p∗i (t) = aie−mi(t−t0)+ (miai+bi)te−mi(t−t0). (52)

e∗i (t) e∗j(t)
Substitution  of  its  first  and  second  derivatives  in  (19),  (20),
and (28) gives the closed form solution for  and  as in
(41) and (42).

fi < 03) Overdamped : Equation (49) can be rewritten as

P∗i (s) =
ais+bi+2miai

(s+mi)2− | fi|
, (53)

| fi| fi
P∗i (s)

where  is  the  absolute  value  of .  By  taking  the  inverse
Laplace of ,

p∗i (t) =
ai

2
√
| fi|

(
c2ie−c1i(t−t0)− c1ie−c2i(t−t0)

)
+

bi

2
√
| fi|

(
e−c1i(t−t0)− e−c2i(t−t0)

)
. (54)

e∗i (t) e∗j(t)Similarly  as  the  former  cases,  and  are  found  as  in
(44) and (45). ■

Finding the errors give us the optimal states as

x∗(t) = xr(t)+ e∗1(t)
y∗(t) = yr(t)+ e∗2(t)

ψ∗(t) = arctan
(

ẏ∗(t)
ẋ∗(t)

)

v∗(t) =



ẋ∗(t)
cos(ψ∗(t))

=
ẏ∗(t)

sin(ψ∗(t))
; ψ∗(t) , {0,±π

2
,π}

ẋ∗(t); ψ∗(t) = 0

−ẋ∗(t); ψ∗(t) = π

sign(ψ∗(t))ẏ∗(t); ψ∗(t) = ±π
2
,

(55)

where

ẋ∗(t) = ẋr(t)+ e∗3(t)
ẏ∗(t) = ẏr(t)+ e∗4(t). (56)

The optimal control inputs are found from (10) as

[
a∗(t)

tan(δ∗(t))

]
=


cos(ψ∗(t)) sin(ψ∗(t))

− ℓ

v∗2 (t)
sin(ψ∗(t))

ℓ

v∗2 (t)
cos(ψ∗(t))

ζ∗(t),
(57)

ζ∗(t) = η∗(t)+
[

ẋ(t)− ẋr(t)
ẏ(t)− ẏr(t)

]
where .

ẋ∗(t) ẏ∗(t) arctan(·)(
−π

2
,
π

2

)
ψ∗(t) v∗(t)

Remark 2: Since  and  are stable and  is the
continuous  function  of  its  argument  in ,  it  can  be
concluded from (55) that the internal dynamics  and 
are bounded.

C.  Boundary Conditions Satisfaction
ai bi

e∗i (t0) e∗j(t0) ai bi

ai bi

e∗(t f ) ≈ 0 e−c1i(t f−t0)

e−c2i(t f−t0) e−mi(t f−t0)

The  parameters  and  should  be  set  to  satisfy  the
boundary  conditions.  Substituting  the  initial  conditions  (37)
into  and  gives  and  as illustrated for each case
in Table II.  As  mentioned  in  Section  IV-A,  the  final  time
boundary  conditions  may  not  be  fulfilled  since  two  unstable
poles are eliminated in (31) to guarantee the stability, and the
unknown parameters  and  are used up to satisfy the initial
boundary  conditions.  However,  the  solution  is  a  good
approximation to satisfy  due to the terms 
and  in overdamped, and  in underdamped
and  critically-damped  cases.  Thus,  there  exists  a  trade  off
between  guaranteeing  the  stability,  as  proved  for  the  OPT3
problem,  and  meeting  the  exact  final  time  conditions  as
elaborated in the solutions of OPT2.

ri qi q j

β2
i βi βi > 1 mi

c1i c2i

Remark 3: From (47) it can be concluded that for the fixed
value of , if the values of , and  increase by the factors of

 and  (for ),  respectively,  the  values  of  for  the
underdamped and critically damped cases,  and  for  the
overdamped case will be increased as

mnew
i =

√
βimold

i , cnew
1i,2i=

√
βicold

1i,2i, (58)

which  determines  how  fast  the  tracking  errors  converge  to
zero.

V.  Simulation Results

In this section, the effect of the weight change in controller
performance,  and  tracking  error  is  evaluated.  At  the  end,  the

 44 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 1, JANUARY 2020



t ∈ [0,30]

proposed closed-form solution in this paper is compared with
other  well-known  methods  in  the  literature.  The  simulations
are developed in MATLAB. The reference time-parametrized
trajectory,  for ,  is  an  eight-shaped  Lissajous  curve
expressed as

xr(t) = 1.1+0.7sin
(2πt

30

)
yr(t) = 0.9+0.7sin

(4πt
30

)
. (59)

x(0) = 1.1
y(0) = 0.8 v(0) = 1 ψ(0) = 1.3
The  system  starts  from  the  initial  configurations, ,

, ,  and , and  the  errors  are  expec-
ted to be zero at final time.

qi q j ri

t ∈ [0,30]

The  tracking  errors  for  three  different  cases  are  shown  in
Fig. 2. The errors can remain in a certain bound by making a
trade-off  among , ,  and  weights.  The impact  of  weight
choice on the final  time error can also be seen by decreasing
the  control  effort  that  will  increase  the  tracking  time  and
consequently,  it  may  unfavorably  cause  the  final  time  error
not  to  be  close  to  zero.  However,  the  trajectory  error  is
globally  exponentially  stable  and  control  inputs  are
guaranteed to be in .

e(t f )

t f

v∗(t) ψ∗(t)

The vehicle trajectory,  velocity,  heading angle,  and control
variables, for three different cases, are illustrated in Figs. 3–5,
respectively.  As  shown in Table III,  the  measured  error 
is  almost  zero  at tf =  30 s,  40 s,  and  50 s  for  the  three
simulated cases, and converges to the zero for large enough 
due  to  the  exponential  stability  of  the  solution.  Boundedness
of the control effort and internal dynamics  and  are
also evident in these figures.

Finally,  the  proposed  analytical  solution  in  this  paper  is
compared  with  our  previous  numerical  solution  (based  on
MATLAB  two-point  boundary  value  problem  solution
package BVP4C) in  [19].  The integrand of  cost  function (3),

ep(·)2+ ev(·)2+ ea(·)2

qi = 1 q j = 1 ri = 1
J(·) 9.87

47.45

i.e., ,  is  plotted  over  time  in Fig. 6.  The
weights  are set  to be , ,  and  for  both cases.
The cost function value  for the analytical solution is 
which  shows  more  than  380% reduction  compared  to  the
numerical case which gives .

VI.  Conclusions and Future Work

In this work, a novel globally exponentially stable trajectory
optimization  and  tracking  control  formulation  is  proposed  to
generate the optimal trajectory and tracking control inputs for
the car-like robot kinematic model.

u∗(t)

The  velocity  and  acceleration  errors  are  minimized  in
addition  to  the  position  error,  which  allows  us  to  extract  the
optimal  control  without  considering  any  parametrized
geometric  function  representations  for  control  inputs  since
they  explicitly  appear  in  the  cost  function.  The  input-output
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linearization  technique  is  employed  to  linearize  the  system
from  the  defined  auxiliary  input  to  output.  The  closed-form
optimal  trajectories  and  control  inputs  are  obtained  by  the
calculus  of  variation  technique,  and  boundedness  of  the
solution and internal dynamics are also proved.

x(t) y(t)

The  proposed  framework  can  be  easily  extended  to  tackle
the  optimal  trajectory  optimization  problem  of  a  higher
dimensional  kinematic  model  with more states  by adding the
higher  order  derivatives  of  the  and  into  the  cost
function and assuming that the reference trajectory is smooth.

Our proposed optimal  planning framework is  an open loop
control  strategy  which  yields  continuous  control  signals
(sequence  of  inputs)  as  a  function  of  the  initial  state  of  the
vehicle.  Thus,  if  the  states  evolves  exactly  according  to  the
model then the predicted state trajectory is exactly obtained in

reality  by  applying  the  calculated  optimal  input  signal.
However, if the model is inaccurate and the system is subject
to  disturbance  not  included  in  the  model,  the  result  of
applying  the  open-loop  control  signal  may  be  different  than
what  is  expected.  Thus,  in  our  future  work,  we  aim to  apply
the repeated application of this open-loop strategy in discrete-
time  domain  to  obtain  the  same  feedback  effect  of  recursive
techniques,  known  as  receding  horizon  strategy  in  the
literature.
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TABLE III  

t f = 30 s t f = 40 s t f = 50 s
Error Measurements at Three Time Instances

( , , and ).

Error Case tf = 30 s tf = 40 s tf = 50 s

e∗1(t)

UD –1.35E–20 2.69E–25 3.93E–31

OD 3.09E–06 1.29E–07 5.36E–09

CD 5.41E–06 8.23E–08 1.18E–09

e∗2(t)

UD –7.47E–20 1.49E–24 2.18E–30

OD 1.71E–05 7.13E–07 2.97E–08

CD 3.00E–05 4.57E–07 6.52E–09

e∗3(t)

UD –2.64E–19 –5.76E–25 –3.23E–31

OD –9.82E–07 –4.09E–08 –1.70E–09

CD –2.24E–06 –3.48E–08 –5.02E–10

e∗4(t)

UD –1.47E–18 –3.19E–24 –1.79E–30

OD –5.44E–06 –2.27E–07 –9.45E–09

CD –1.24E–05 –1.93E–07 –2.78E–09

η∗1(t)

UD 7.58E–19 7.06E–25 –3.69E–31

OD 3.12E–07 1.30E–08 5.41E–10

CD 9.20E–07 1.46E–08 2.14E–10

η∗2(t)

UD 4.20E–18 3.92E–24 –2.05E–30

OD 1.73E–06 7.21E–08 3.00E–09

CD 5.10E–06 8.11E–08 1.19E–09
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Fig. 6.     Comparison of analytical and numerical methods based on their
measured cost function integrand, i.e., , over time.
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